Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
1.
Nat Commun ; 14(1): 5176, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620341

RESUMO

Identifying genes whose expression is associated with schizophrenia (SCZ) risk by transcriptome-wide association studies (TWAS) facilitates downstream experimental studies. Here, we integrated multiple published datasets of TWAS, gene coexpression, and differential gene expression analysis to prioritize SCZ candidate genes for functional study. Convergent evidence prioritized Propionyl-CoA Carboxylase Subunit Beta (PCCB), a nuclear-encoded mitochondrial gene, as an SCZ risk gene. However, the PCCB's contribution to SCZ risk has not been investigated before. Using dual luciferase reporter assay, we identified that SCZ-associated SNPs rs6791142 and rs35874192, two eQTL SNPs for PCCB, showed differential allelic effects on transcriptional activities. PCCB knockdown in human forebrain organoids (hFOs) followed by RNA sequencing analysis revealed dysregulation of genes enriched with multiple neuronal functions including gamma-aminobutyric acid (GABA)-ergic synapse. The metabolomic and mitochondrial function analyses confirmed the decreased GABA levels resulted from inhibited tricarboxylic acid cycle in PCCB knockdown hFOs. Multielectrode array recording analysis showed that PCCB knockdown in hFOs resulted into SCZ-related phenotypes including hyper-neuroactivities and decreased synchronization of neural network. In summary, this study utilized hFOs-based multi-omics analyses and revealed that PCCB downregulation may contribute to SCZ risk through regulating GABAergic pathways, highlighting the mitochondrial function in SCZ.


Assuntos
Carbono-Carbono Ligases , Multiômica , Esquizofrenia , Humanos , Metabolômica , Organoides , Prosencéfalo , Esquizofrenia/genética , Carbono-Carbono Ligases/genética
2.
Nature ; 608(7924): 778-783, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922516

RESUMO

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Assuntos
Ferroptose , Vitamina K , Antídotos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carbono-Carbono Ligases/metabolismo , Coenzimas/metabolismo , Ferroptose/efeitos dos fármacos , Hidroquinonas/metabolismo , Hidroquinonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacologia , Varfarina/efeitos adversos
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(6): 646-650, 2022 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-35773773

RESUMO

γ-glutamyl carboxylase (GGCX), also known as vitamin K-dependent glutamyl carboxylase, catalyzes the posttranslational modification of specific glutamate residues in vitamin K-dependent proteins (VKDPs), and participates multiple biological functions including blood coagulation, bone metabolism, vascular calcification, and cell proliferation. It has been reported originally that GGCX pathogenic variation causes blood coagulation deficiency, which is called as vitamin K-dependent coagulation factor deficiency 1 (VKCFD1). Recently, it has been found that GGCX gene variation results in multiple clinical phenotypes, including dermatological, ophthalmological, skeletal or cardiac abnormalities. Among them, dermatological phenotype is the most common, which is known as pseudoxanthoma elasticum-like syndrome. This paper has reviewed the GGCX pathogenic variation associated phenotypes, in order to increase the recognition of GGCX-related genetic diseases and to help its diagnosis and treatment.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Carbono-Carbono Ligases , Transtornos Herdados da Coagulação Sanguínea/diagnóstico , Transtornos Herdados da Coagulação Sanguínea/enzimologia , Transtornos Herdados da Coagulação Sanguínea/genética , Transtornos Herdados da Coagulação Sanguínea/metabolismo , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Humanos , Fenótipo , Vitamina K/metabolismo , Vitamina K 1
4.
Blood ; 140(15): 1710-1722, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767717

RESUMO

γ-Glutamyl carboxylase (GGCX) generates multiple carboxylated Glus (Glas) in vitamin K-dependent (VKD) proteins that are required for their functions. GGCX is processive, remaining bound to VKD proteins throughout multiple Glu carboxylations, and this study reveals the essentiality of processivity to VKD protein function. GGCX mutants (V255M and S300F) whose combined heterozygosity in a patient causes defective clotting and calcification were studied using a novel assay that mimics in vivo carboxylation. Complexes between variant carboxylases and VKD proteins important to hemostasis (factor IX [FIX]) or calcification (matrix Gla protein [MGP]) were reacted in the presence of a challenge VKD protein that could potentially interfere with carboxylation of the VKD protein in the complex. The VKD protein in the complex with wild-type carboxylase was carboxylated before challenge protein carboxylation occurred and became fully carboxylated. In contrast, the V255M mutant carboxylated both forms at the same time and did not completely carboxylate FIX in the complex. S300F carboxylation was poor with both FIX and MGP. Additional studies analyzed FIX- and MGP-derived peptides containing the Gla domain linked to sequences that mediate carboxylase binding. The total amount of carboxylated peptide generated by the V255M mutant was higher than that of wild-type GGCX; however, the individual peptides were partially carboxylated. Analysis of the V255M mutant in FIX HEK293 cells lacking endogenous GGCX revealed poor FIX clotting activity. This study shows that disrupted processivity causes disease and explains the defect in the patient. Kinetic analyses also suggest that disrupted processivity may occur in wild-type carboxylase under some conditions (eg, warfarin therapy or vitamin K deficiency).


Assuntos
Carbono-Carbono Ligases , Vitamina K , Coagulação Sanguínea , Carbono-Carbono Ligases/química , Carbono-Carbono Ligases/genética , Fator IX/metabolismo , Células HEK293 , Humanos , Peptídeos , Proteínas , Vitamina K/metabolismo , Varfarina
5.
Biotechnol Lett ; 44(8): 975-984, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35731352

RESUMO

Based on observations indicating that the γ-carboxylase enzyme has a lower affinity for the protein C (PC) propeptide and that the γ-carboxylase region in the PC propeptide has a higher net charge, expression of recombinant chimeric factor IX (FIX) equipped with the PC propeptide was studied. The prepropeptide of FIX was replaced with that of PC by SOEing PCR and after cloning, recombinant pMT-prepro PC/FIX was transfected into insect Drosophila S2 cells. The expression and activity of expressed FIX were analyzed employing antigen and activity analyses 72 h of post-induction with copper. Higher secretion (1.2 fold) and activity (1.6 fold) levels were observed for chimeric prepro- PC/FIX in relation to wild-type FIX. Furthermore, after barium citrate precipitation, the evaluation of fully γ-carboxylated FIX indicated that more than 51% of the total FIX produced with the PC prepropeptide was fully γ-carboxylated, representing a substantial improvement (twofold) over a system employing the native FIX propeptide in which 25% of the protein is fully γ-carboxylated. The data illustrated that the expression of FIX using the PC propeptide led to much higher fully γ-carboxylated material, which is preferred to FIX constructs tolerating the sequence for the native FIX propeptide expressed in heterologous S2 systems.


Assuntos
Carbono-Carbono Ligases , Fator IX , Carbono-Carbono Ligases/metabolismo , Fator IX/genética , Fator IX/metabolismo , Proteínas Recombinantes/metabolismo
6.
Hum Mutat ; 43(1): 42-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816548

RESUMO

γ-Glutamyl carboxylase (GGCX) catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins. Pathogenic variants in GGCX cause a rare hereditary bleeding disorder called Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1). In addition to bleedings, some VKCFD1 patients develop skin laxity and skeletal dysmorphologies. However, the pathophysiological mechanisms underlying these non-hemorrhagic phenotypes remain elusive. Therefore, we have analyzed 20 pathogenic GGCX variants on their ability to γ-carboxylate six non-hemostatic VKD proteins in an in vitro assay, where GGCX variants were expressed in GGCX-/- cells and levels of γ-carboxylated co-expressed VKD proteins were detected by a functional ELISA. We observed that GGCX variants causing markedly reduced γ-carboxylation of Gla rich protein (GRP) in vitro were reported in patients with skin laxity. Reduced levels of γ-carboxylated Matrix gla protein (MGP) are not exclusive for causing skeletal dysmorphologies in VKCFD1 patients. In silico docking of vitamin K hydroquinone on a GGCX model revealed a binding site, which was validated by in vitro assays. GGCX variants affecting this site result in disability to γ-carboxylate VKD proteins and hence are involved in the most severe phenotypes. This genotype-phenotype analysis will help to understand the development of non-hemorrhagic phenotypes and hence improve treatment in VKCFD1 patients.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Carbono-Carbono Ligases , Transtornos Herdados da Coagulação Sanguínea/genética , Carbono-Carbono Ligases/química , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Carboxiliases , Humanos , Mutação
7.
Am J Med Genet A ; 188(1): 314-318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558179

RESUMO

Congenital combined vitamin K-dependent clotting factors deficiency (VKCFD) is a rare autosomal recessive disease resulting in hemorrhagic symptoms usually associated with developmental disorders and bone abnormalities. Pathogenic variants in two genes encoding enzymes of the vitamin K cycle, GGCX and VKORC1, can lead to this disorder. We present the case of a male fetus with a brachytelephalangic chondrodysplasia punctata (CDP), absence of nasal bone, growth restriction, and bilateral ventriculomegaly at 18 weeks of gestation. Pathological examination showed a Binder phenotype, hypoplastic distal phalanges, stippled epiphyses, and brain abnormalities suggestive of a brain hemorrhage. Two GGCX pathogenic variants inherited respectively from the mother and the father were identified. To our knowledge, this is the first prenatal description of VKCFD. Even if it remains a rare etiology, which is mostly described in children or adult patients, VKCFD should be considered in fetuses with CDP.


Assuntos
Carbono-Carbono Ligases , Condrodisplasia Punctata , Fatores de Coagulação Sanguínea , Carbono-Carbono Ligases/genética , Condrodisplasia Punctata/diagnóstico , Condrodisplasia Punctata/genética , Feminino , Feto , Humanos , Masculino , Gravidez , Vitamina K , Vitamina K 1 , Vitamina K Epóxido Redutases/genética
8.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573334

RESUMO

Identifying multiple ultra-rare genetic syndromes with overlapping phenotypes is a diagnostic conundrum in clinical genetics. This study investigated the pathogenicity of a homozygous missense variant in GNB5 (GNB5L; NM_016194.4: c.920T > G (p. Leu307Arg); GNB5S; NM_006578.4: c.794T > G (p. Leu265Arg)) identified through exome sequencing in a female child who also had 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency (newborn screening positive) and hemoglobin E trait. The proband presented with early-onset intellectual disability, the severity of which was more in keeping with GNB5-related disorder than 3-MCC deficiency. She later developed bradycardia and cardiac arrest, and upon re-phenotyping showed cone photo-transduction recovery deficit, all known only to GNB5-related disorders. Patient-derived fibroblast assays showed preserved GNB5S expression, but bioluminescence resonance energy transfer assay showed abolished function of the variant reconstituted Gß5S containing RGS complexes for deactivation of D2 dopamine receptor activity, confirming variant pathogenicity. This study highlights the need for precise phenotyping and functional assays to facilitate variant classification and clinical diagnosis in patients with complex medical conditions.


Assuntos
Carbono-Carbono Ligases/genética , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/etiologia , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Carbono-Carbono Ligases/deficiência , Criança , Oftalmopatias/etiologia , Oftalmopatias/genética , Feminino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Doenças Genéticas Inatas/genética , Variação Genética , Células HEK293 , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Triagem Neonatal , Fenótipo , Reprodutibilidade dos Testes , Distúrbios Congênitos do Ciclo da Ureia/etiologia , Sequenciamento do Exoma
9.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066831

RESUMO

The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.


Assuntos
Benzoatos/metabolismo , Benzofenonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Xantonas/metabolismo , Biotransformação , Carbono-Carbono Ligases/metabolismo , Cromatografia Líquida , Coenzima A Ligases/metabolismo , Simulação por Computador , Meios de Cultura , Garcinia mangostana/enzimologia , Garcinia mangostana/genética , Malonil Coenzima A/metabolismo , Plasmídeos/genética , Rodopseudomonas/enzimologia , Rodopseudomonas/genética , Espectrometria de Massas em Tandem
10.
Clin Chim Acta ; 519: 18-25, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33798502

RESUMO

BACKGROUND AND AIMS: Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by a deficiency of propionyl-CoA carboxylase and mutations in the PCCA and PCCB genes. In this study, we investigated the clinical characteristics of individuals with PA and conducted genetic analyses to provide new genetic evidence for the diagnosis of PA. MATERIALS AND METHODS: We conducted whole-exome sequencing and Sanger sequencing in four individuals with PA from three unrelated Chinese families. We also performed a structural analysis of the PCCB protein variants. Couples from the three families included in our study underwent in vitro fertilization with preimplantation genetic testing. RESULTS: We found five variants of PCCB. These biallelic variants were inherited from heterozygous parental carriers and were located in the functional domain, absent in human population genome datasets, and predicted to be deleterious. These findings indicate that the variants might be responsible for the clinical features observed in these particular patients with PA. Through successful embryo transfer and implantation, one of the couples fortunately gave birth to a healthy child. CONCLUSION: Overall, our study can expand the mutation spectrum of PCCB and provide useful information for the prenatal diagnosis of PA and genetic counseling for affected individuals.


Assuntos
Carbono-Carbono Ligases/genética , Acidemia Propiônica , China , Feminino , Heterozigoto , Humanos , Metilmalonil-CoA Descarboxilase/genética , Mutação , Gravidez , Acidemia Propiônica/genética
11.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923806

RESUMO

It is estimated that up to one-third of all variants causing inherited diseases affect splicing; however, their deleterious effects and roles in disease pathogenesis are often not fully characterized. Given their prevalence and the development of various antisense-based splice-modulating approaches, pathogenic splicing variants have become an important object of genomic medicine. To improve the accuracy of variant interpretation in public mutation repositories, we applied the minigene splicing assay to study the effects of 24 variants that were predicted to affect normal splicing in the genes associated with propionic acidemia (PA)-PCCA and PCCB. As a result, 13 variants (including one missense and two synonymous variants) demonstrated a significant alteration of splicing with the predicted deleterious effect at the protein level and were characterized as spliceogenic loss-of-function variants. The analysis of the available data for the studied variants and application of the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) guidelines allowed us to precisely classify five of the variants and change the pathogenic status of nine. Using the example of the PA genes, we demonstrated the utility of the minigene splicing assay in the fast and effective assessment of the spliceogenic effect for identified variants and highlight the necessity of their standardized classification.


Assuntos
Carbono-Carbono Ligases/genética , Acidemia Propiônica/genética , Splicing de RNA , Carbono-Carbono Ligases/metabolismo , Linhagem Celular , Humanos , Mutação com Perda de Função
12.
Medicine (Baltimore) ; 100(10): e24161, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33725819

RESUMO

ABSTRACT: Propionic acidemia is associated with pathogenic variants in PCCA or PCCB gene. We investigated the potential pathogenic variants in PCCA or PCCB genes in Fujian Han population.Two probands and their families of Han ethnicity containing two generations were subject to newborn screening using tandem mass spectrometry, followed by diagnosis using urine gas chromatography mass spectrometry. Sanger sequencing was used to identify potential mutations in PCCA and PCCB genes.Compound heterozygous variants were identified in PCCB gene in two siblings of the first family, the youngest girl showed a novel missense variant c.1381G>C (p.Ala461Pro) in exon 13 and a heterozygous missense variant c.1301C>T (p.Ala434Val) in exon 13, which were inherited respectively from their parents. The oldest boy is a carrier with a novel missense variant c.1381G>C (p.Ala461Pro) in exon 13 which were inherited from his father. In the second family, c.1535G>A homozygous mutations were identified in the baby girl, which were inherited respectively from their parents. In silico analysis, several different types of bioinformatic software were utilized, which predicted that the novel variant c.1381G>C in PCCB gene was damaged. According to ACMG principle, the missense variant c.1381G>C (p.Ala461Pro) in exon 13 was a Variant of Undetermined Significance (VUS).One novel missense variant and two missense variants in PCCB gene were identified in the study. The novel variant of PCCB gene identified VUS was identified for the first time in the Chinese population, which enriched the mutational spectrum of PCCB gene.


Assuntos
Carbono-Carbono Ligases/genética , Metilmalonil-CoA Descarboxilase/genética , Acidemia Propiônica/genética , Povo Asiático/genética , Análise Mutacional de DNA , Feminino , Testes Genéticos , Heterozigoto , Humanos , Lactente , Recém-Nascido , Mutação de Sentido Incorreto , Triagem Neonatal , Linhagem , Acidemia Propiônica/sangue , Acidemia Propiônica/diagnóstico , Espectrometria de Massas em Tandem
13.
Neurol Sci ; 42(10): 4203-4207, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33559030

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have shown that variants in the 3-methylcrotonyl-CoA carboxylase (MCCC1)/lysosome-associated membrane protein 3 (LAMP3) loci (rs10513789, rs12637471, rs12493050) reduce the risk of Parkinson's disease (PD) in Caucasians, Chinese and Ashkenazi-Jews while the rs11248060 variant in the diacylglycerol kinase theta (DGKQ) gene increases the risk of PD in Caucasian and Han Chinese cohorts. However, their roles in Malays are unknown. Therefore, this study aims to investigate the association of these variants with the risk of PD in individuals of Malay ancestry. METHODS: A total of 1114 subjects comprising of 536 PD patients and 578 healthy controls of Malay ancestry were recruited and genotyped using Taqman® allelic discrimination assays. RESULTS: The G allele of rs10513789 (OR = 0.83, p = 0.001) and A allele of rs12637471 (OR = 0.79, p = 0.007) in the MCCC1/LAMP3 locus were associated with a protective effect against developing PD in the Malay population. A recessive model of penetrance showed a protective effect of the GG genotype for rs10513789 and the AA genotype for rs12637471. No association with PD was found with the other MCCC1/LAMP3 rs12493050 variant or with the DGKQ (rs11248060) variant. No significant associations were found between the four variants with the age at PD diagnosis. CONCLUSION: MCCC1/LAMP3 variants rs10513789 and rs12637471 protect against PD in the Malay population.


Assuntos
Doença de Parkinson , Povo Asiático/genética , Carbono-Carbono Ligases , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Malásia , Proteínas de Neoplasias , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética
14.
J Thromb Haemost ; 19(6): 1412-1424, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33590680

RESUMO

BACKGROUND: Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-glutamyl carboxylase (GGCX). VKCFD1 patients are treated life-long with high doses of vitamin K in order to correct the bleeding phenotype. However, normalization of clotting factor activities cannot be achieved for all VKCFD1 patients. OBJECTIVE: The current study aims to investigate the responsiveness to vitamin K for all reported GGCX mutations with respect to clotting factors in order to optimize treatment. METHODS: This study developed an assay using genetically engineered GGCX-/- cells, in which GGCX mutations were analyzed with respect to their ability to γ-carboxylate vitamin K dependent pro-coagulatory and anti-coagulatory clotting factors by ELISA. Additionally, factor VII activity was measured in order to proof protein functionality. For specific GGCX mutations immunofluorescent staining was performed to assess the intracellular localization of clotting factors with respect to GGCX wild-type and mutations. RESULTS: All GGCX mutations were categorized into responder and low responder mutations, thereby determining the efficiency of vitamin K supplementation. Most VKCFD1 patients have at least one vitamin K responsive GGCX allele that is able to γ-carboxylate clotting factors. In few patients, the hemorrhagic phenotype cannot be reversed by vitamin K administration because GGCX mutations on both alleles affect either structural or catalytically important sites thereby resulting in residual ability to γ-carboxylate clotting factors. CONCLUSION: With these new functional data we can predict the hemorrhagic outcome of each VKCFD1 genotype, thus recommending treatments with either vitamin K or prothrombin complex concentrate.


Assuntos
Carbono-Carbono Ligases , Vitamina K , Carbono-Carbono Ligases/genética , Humanos , Mutação , Fenótipo , Vitamina K 1 , Vitamina K Epóxido Redutases/genética
15.
Mol Cell Biol ; 41(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33526452

RESUMO

γ-Glutamyl carboxylase (GGCX) is a vitamin K (VK)-dependent enzyme that catalyzes the γ-carboxylation of glutamic acid residues in VK-dependent proteins. The anticoagulant warfarin is known to reduce GGCX activity by inhibiting the VK cycle and was recently shown to disrupt spermatogenesis. To explore GGCX function in the testis, here, we generated Sertoli cell-specific Ggcx conditional knockout (Ggcx scKO) mice and investigated their testicular phenotype. Ggcx scKO mice exhibited late-onset male infertility. They possessed morphologically abnormal seminiferous tubules containing multinucleated and apoptotic germ cells, and their sperm concentration and motility were substantially reduced. The localization of connexin 43 (Cx43), a gap junction protein abundantly expressed in Sertoli cells and required for spermatogenesis, was distorted in Ggcx scKO testes, and Cx43 overexpression in Sertoli cells rescued the infertility of Ggcx scKO mice. These results highlight GGCX activity within Sertoli cells, which promotes spermatogenesis by regulating the intercellular connection between Sertoli cells and germ cells.


Assuntos
Carbono-Carbono Ligases/metabolismo , Células Germinativas/metabolismo , Células de Sertoli/metabolismo , Vitamina K/metabolismo , Animais , Conexina 43/genética , Conexina 43/metabolismo , Infertilidade Masculina/genética , Masculino , Camundongos , Espermatogênese/fisiologia
16.
Blood ; 137(4): 533-543, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507293

RESUMO

γ-Glutamyl carboxylase (GGCX) is an integral membrane protein that catalyzes posttranslational carboxylation of a number of vitamin K-dependent (VKD) proteins involved in a wide variety of physiologic processes, including blood coagulation, vascular calcification, and bone metabolism. Naturally occurring GGCX mutations are associated with multiple distinct clinical phenotypes. However, the genotype-phenotype correlation of GGCX remains elusive. Here, we systematically examined the effect of all naturally occurring GGCX mutations on the carboxylation of 3 structure-function distinct VKD proteins in a cellular environment. GGCX mutations were transiently introduced into GGCX-deficient human embryonic kidney 293 cells stably expressing chimeric coagulation factor, matrix Gla protein (MGP), or osteocalcin as VKD reporter proteins, and then the carboxylation efficiency of these reporter proteins was evaluated. Our results show that GGCX mutations differentially affect the carboxylation of these reporter proteins and the efficiency of using vitamin K as a cofactor. Carboxylation of these reporter proteins by a C-terminal truncation mutation (R704X) implies that GGCX's C terminus plays a critical role in the binding of osteocalcin but not in the binding of coagulation factors and MGP. This has been confirmed by probing the protein-protein interaction between GGCX and its protein substrates in live cells using bimolecular fluorescence complementation and chemical cross-linking assays. Additionally, using a minigene splicing assay, we demonstrated that several GGCX missense mutations affect GGCX's pre-messenger RNA splicing rather than altering the corresponding amino acid residues. Results from this study interpreted the correlation of GGCX's genotype and its clinical phenotypes and clarified why vitamin K administration rectified bleeding disorders but not nonbleeding disorders.


Assuntos
Carbono-Carbono Ligases/genética , Carboxiliases/genética , Processamento de Proteína Pós-Traducional/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Carbono-Carbono Ligases/química , Carboxiliases/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Genes Reporter , Estudos de Associação Genética , Pleiotropia Genética , Células HEK293 , Transtornos Hemorrágicos/tratamento farmacológico , Transtornos Hemorrágicos/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Osteocalcina/genética , Osteocalcina/metabolismo , Proteína C/genética , Proteína C/metabolismo , Domínios Proteicos , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Vitamina K/fisiologia , Vitamina K/uso terapêutico
17.
Biochemistry ; 60(5): 365-372, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33482062

RESUMO

LnmK stereospecifically accepts (2R)-methylmalonyl-CoA, generating propionyl-S-acyl carrier protein to support polyketide biosynthesis. LnmK and its homologues are the only known enzymes that carry out a decarboxylation (DC) and acyl transfer (AT) reaction in the same active site as revealed by structure-function studies. Substrate-assisted catalysis powers LnmK, as decarboxylation of (2R)-methylmalonyl-CoA generates an enolate capable of deprotonating active site Tyr62, and the Tyr62 phenolate subsequently attacks propionyl-CoA leading to a propionyl-O-LnmK acyl-enzyme intermediate. Due to the inherent reactivity of LnmK and methylmalonyl-CoA, a substrate-bound structure could not be obtained. To gain insight into substrate specificity, stereospecificity, and catalytic mechanism, we determined the structures of LnmK with bound substrate analogues that bear malonyl-thioester isosteres where the carboxylate is represented by a nitro or sulfonate group. The nitro-bearing malonyl-thioester isosteres bind in the nitronate form, with specific hydrogen bonds that allow modeling of the (2R)-methylmalonyl-CoA substrate and rationalization of stereospecificity. The sulfonate isosteres bind in multiple conformations, suggesting the large active site of LnmK allows multiple binding modes. Considering the smaller malonyl group has more conformational freedom than the methylmalonyl group, we hypothesized the active site can entropically screen against catalysis with the smaller malonyl-CoA substrate. Indeed, our kinetic analysis reveals malonyl-CoA is accepted at 1% of the rate of methylmalonyl-CoA. This study represents another example of how our nitro- and sulfonate-bearing methylmalonyl-thioester isosteres are of use for elucidating enzyme-substrate binding interactions and revealing insights into catalytic mechanism. Synthesis of a larger panel of analogues presents an opportunity to study enzymes with complicated structure-function relationships such as acyl-CoA carboxylases, trans-carboxytransferases, malonyltransferases, and ß-ketoacylsynthases.


Assuntos
Aciltransferases/química , Carboxiliases/química , Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/química , Carbono-Carbono Ligases/química , Catálise , Domínio Catalítico , Malonil Coenzima A/metabolismo , Streptomyces/metabolismo , Streptomyces coelicolor/metabolismo , Especificidade por Substrato
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(1): 74-77, 2021 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-33423264

RESUMO

OBJECTIVE: To explore the genetic basis for a child with clinically suspected 3-methylcrotonyl-coenzyme A carboxylase deficiency (MCCD). METHODS: Genomic DNA was extracted from peripheral blood samples of the proband and her parents. Whole exome sequencing was used to screen pathogenic variant in the proband. Suspected variant was verified by Sanger sequencing. Impact of the variant on the structure and function of protein product was analyzed by using bioinformatic software. RESULTS: Sanger sequencing showed that the proband has carried homozygous missense c.1342G>A (p.Gly448Ala) variant of the MCCC2 gene, for which her mother was a heterozygous carrier. The same variant was not detected in her father. The variant was predicted to be pathogenic by PolyPhen-2 and Mutation Taster software, and the site was highly conserved among various species. Based on the American College of Medical Genetics and Genomics standards and guidelines, the c.1342G>A (p.Gly448Ala) variant of MCCC2 gene was predicted to be likely pathogenic(PM2+PP2-PP5). CONCLUSION: The homozygous missense variant of the MCCC2 gene c.1342G>A (p.Gly448Ala) probably underlay the molecular pathogenesis of the proband. Genetic testing has confirmed the clinical diagnosis.


Assuntos
Carbono-Carbono Ligases/deficiência , Mutação de Sentido Incorreto , Distúrbios Congênitos do Ciclo da Ureia , Carbono-Carbono Ligases/genética , Criança , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Distúrbios Congênitos do Ciclo da Ureia/genética
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-879527

RESUMO

OBJECTIVE@#To explore the genetic basis for a child with clinically suspected 3-methylcrotonyl-coenzyme A carboxylase deficiency (MCCD).@*METHODS@#Genomic DNA was extracted from peripheral blood samples of the proband and her parents. Whole exome sequencing was used to screen pathogenic variant in the proband. Suspected variant was verified by Sanger sequencing. Impact of the variant on the structure and function of protein product was analyzed by using bioinformatic software.@*RESULTS@#Sanger sequencing showed that the proband has carried homozygous missense c.1342G>A (p.Gly448Ala) variant of the MCCC2 gene, for which her mother was a heterozygous carrier. The same variant was not detected in her father. The variant was predicted to be pathogenic by PolyPhen-2 and Mutation Taster software, and the site was highly conserved among various species. Based on the American College of Medical Genetics and Genomics standards and guidelines, the c.1342G>A (p.Gly448Ala) variant of MCCC2 gene was predicted to be likely pathogenic(PM2+PP2-PP5).@*CONCLUSION@#The homozygous missense variant of the MCCC2 gene c.1342G>A (p.Gly448Ala) probably underlay the molecular pathogenesis of the proband. Genetic testing has confirmed the clinical diagnosis.


Assuntos
Criança , Feminino , Humanos , Masculino , Carbono-Carbono Ligases/genética , Mutação de Sentido Incorreto/genética , Linhagem , Distúrbios Congênitos do Ciclo da Ureia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...